THE PHOTOLYSIS OF CCl₄ IN THE PRESENCE OF O_2 OR O_3 AT 213.9 nm, AND THE REACTION OF $O(^1D)$ WITH CCl₄

R. K. M. JAYANTY, R. SIMONAITIS and JULIAN HEICKLEN

Department of Chemistry and Ionosphere Research Laboratory, The Pennsylvania State University, University Park, Pa. 16802 (U.S.A.)

(Received January 14, 1975)

Summary

When CCl_4 is photolyzed at 25 °C with 213.9 nm radiation in either the presence of O_2 or O_3 the products are CCl_2O , Cl_2 , and an unidentified compound. At low total pressure, $\Phi\{CCl_2O\} = 2.0$, but this value drops to 1.0 for $[CCl_4] \sim 50$ Torr and $[O_2]$ or $[N_2] = 700$ Torr. $\Phi\{Cl_2\}$ is reasonably invariant to pressure at $\sim 1.3 - 1.4$. The results are interpreted in terms of an excited molecule mechanism which proceeds entirely by:

 $\text{CCl}_4^* \rightarrow \text{CCl}_2 + \text{Cl}_2$

at low pressures, with singlet CCl_2 being produced. At higher pressures CCl_4^* is quenched and CCl_2 production is inhibited, though it may (and probably is) replaced by production of $CCl_3 + Cl_2$.

The O(¹D) reaction with CCl₄ at 25 °C gives CCl₂O and Cl₂ as the exclusive products. The O(¹D) was produced from O₃ photolysis at 253.7 nm. The quantum yields are invariant to reaction conditions and are Φ {CCl₂O} = 0.87 ± 0.2 and Φ {Cl₂} = 1.1 ± 0.2. The O₃ consumption is the same, or slightly higher than in the absence of CCl₄. The three possible reaction paths are:

$$O(^{1}D) + CCl_{4} \rightarrow ClO + CCl_{3}$$
(13a)

$$\rightarrow \text{CCl}_2\text{O} + \text{Cl}_2 \tag{13b}$$

$$\rightarrow O(^{3}P) + CCl_{4}$$
(13c)

Reaction (13a) was shown to be an important, and possibly the exclusive path, whereas reaction (13c) is unimportant and proceeds < 20% of the time. The overall reaction rate coefficient for reaction (13) was measured by studying the decrease in $\Phi{CCl_2O}$ in the presence of O_2 . The rate coefficient for the $O(^1D)-CCl_4$ reaction relative to the $O(^1D)-O_2$ reaction is 4.0 with about a \pm 10% uncertainty.

Introduction

The current interest in the atmospheric effects of anthropogenically released halocarbons has prompted us to initiate a program of halocarbon oxidation studies. In the present paper, results are presented for the photolysis of CCl_4 in the presence of O_2 or O_3 and the reaction of CCl_4 with $O(^1D)$ atoms.

The earliest works on the photochemistry of CCl_4 were done in the liquid phase [1, 2]. In the vapor CCl_4 has been used as a source of CCl_3 radicals [3]. The only detailed study of the pure compound in the vapor phase was recently reported by Davis *et al.* [4] who photolyzed CCl_4 at 25 °C with radiation at 253.7, 184.9, 147.0, and 106.7 nm. At 253.7 nm the only products were Cl_2 and C_2Cl_6 and the results indicated that Cl and CCl_3 were produced with unit quantum efficiency. At 184.9 nm, C_2Cl_4 was also produced and evidence for CCl_2 production was indicated. As far as we known the photo-oxidation of CCl_4 has not been studied previously.

The only report of the $O({}^{1}D)-CCl_{4}$ reaction was by Meaburn *et al.* [5]. They examined the gas-phase radiolysis of $CO_{2}-O_{2}-CCl_{4}$ mixtures and concluded that singlet oxygen atoms react with CCl_{4} to give ClO radicals.

Experimental

Mixtures of CCl₄ with O_2 or O_3 or both were irradiated in a cylindrical quartz reaction cell 10 cm long and 5 cm in diameter. The cell was attached to a conventional Hg-free glass vacuum line equipped with Teflon stopcocks with Viton "O" rings. Extra dry grade O_2 from the Matheson Co. was used without further purification. The O_3 was prepared from a Tesla coil discharge through O_2 and was distilled at 87 K before use. The CCl₄ was "Baker Analyzed" reagent and was purified by distillation from a trap maintained at 210 to one at 177 K. The CCl₄ pressure was measured with an H₂SO₄ manometer, and the O_2 pressure was measured with an alphatron gauge calibrated against an H₂SO₄ manometer. The O_3 pressure was measured spectrophotometrically and could be monitored continuously.

The 213.9 nm radiation for the photolysis of CCl₄ was provided by a Phillips (93109E) low-pressure zinc resonance lamp. For the O(¹D)-atom study, the 253.7 nm radiation was obtained from a Hanovia "spiral" low pressure Hg resonance lamp. The 253.7 nm line was isolated by passing the radiation through Cl₂ gas and a Corning CS 7-54 filter before entering the reaction cell. Actinometry at both wavelengths was done by measuring H₂ production from HBr photolysis where the quantum yield of H₂ production, Φ {H₂}, is 1.0 [6].

Analysis for $COCl_2$ was performed mainly by gas chromatography and in a few experiments by infra-red analysis. Chromatography was done with a stainless steel column 10 ft. \times ¼ in. containing 10% silicone oil (SP2100) on 80 - 100 mesh Supelcoport (Supelco Inc., Bellefonte, Pa.). Analysis for Cl_2 was made in the photolysis experiments by chromatography in the same column as for $COCl_2$ and by ultra-violet absorption spectroscopy in a Cary 14 spectrometer. For the $O(^1D)$ experiments the analysis for Cl_2 was made with a dual beam spectrophotometer [7] at 366.0 nm in order to obtain greater sensitivity. It was assumed that the increase in absorption at 366.0 nm was due entirely to Cl_2 . For CO analysis the column used was 10 ft. \times ¼ in. containing 5 Å molecular sieves. For C_2Cl_6 analysis a flame ionization chromatograph was used equipped with a 10 ft. \times ¼ in. column containing 3% SE 30 on Supelcoport.

Results

Photolysis of CCl_4

Irradiation of CCl_4 at 213.9 nm and 25 °C in the presence of O_2 or O_3 leads to the production of CCl_2O and Cl_2 . A careful search for CO and C_2Cl_6 was made but these compounds were not detected. The upper limit for their quantum yields was 0.01. An examination of the u.v. spectrum of the reaction mixture in the range 220 - 500 nm showed the presence of an additional product with marked vibrational structure and a maximum at 260.0 nm. The identity of this product could not be established, nor could a systematic kinetic study be made because the yield was very irreproducible. This irreproducibility may have been related to the low volatility of the product making collection difficult.

The quantum yields of Cl_2 and $COCl_2$ formation in the presence of O_2 and O_3 are presented in Tables 1 and 2, respectively. Table 2 also gives some initial O_3 removal quantum yields for the CCl_4-O_3 system, and they range from 1.9 to 4.9 with a slight downward trend with increasing pressure. Experiments were done at CCl_4 pressures of ~ 10 and 48 Torr, respectively. The O_2 pressure varied from 22 to 640 Torr, a factor of 32, and the O_3 pressure varied from 388 mTorr to 2.7 Torr, a factor of seven. In some runs up to 700 Torr N₂ was added. The more extensive COCl₂ data are presented in graphical form in Fig. 1. From the Figure it is evident that in spite of the considerable scatter of the data $\Phi{\text{COCl}_2}$ is subject to a pressure effect in both the CCl_4-O_2 and CCl_4-O_3 systems. $\Phi\{COCl_2\}$ falls from about 2.0 at low total pressure to ~ 1.0 at high total pressure; CCl_4 is much more efficient than O_2 or N_2 in reducing the yield. The Cl_2 quantum yields are about 1.3 - 1.4 in both the $CCl_4 - O_2$ and $CCl_4 - O_3$ systems, and do not show a clear pressure dependence in the range 0 - 300 Torr O_2 or N_2 and 10 - 48 Torr CCl₄.

Reaction of $O(^{1}D)$ with CCl_{4}

Irradiation of O_3 at 253.7 nm in the presence of CCl_4 leads to the consumption of O_3 and the production of $COCl_2$ and Cl_2 . A search for CO was made but none could be detected. The quantum yields of $COCl_2$ and Cl_2 formation, and O_3 removal are presented in Table 3. These quantum yields of O_3 removal are reported relative to the quantum yields of disappearance in the absence of CCl_4 , $-\Phi_0\{O_3\}$. Earlier work has shown that

[O ₂]	[CCl ₄]	[O ₂]	I _a	Φ{CCl ₂ O}	$\Phi{Cl_2}$
[CCl ₄]	(Torr)	(Torr)	(mTorr/mi	n)	
0.47	46.8	21.8	11.8	1.50	_
0.94	45.9	43.0	11.8	1.26	
2.30	48.0	110.2^{a}	11.8	1.11	—
2.32	49.3	114.5	11.8	1.10	
2.50	10.8	27.0	4.2	2.18	1.35
2.72	47.1	128.0	11.8	1.47	
2.90	48.0	139.0	11.8		1.37 ^d
3.11	10.5	32.7	4.2	2.03	1.32
3.62	48.0	174.0	11.8	1.25	—
3.93	48.6	191.0	11.8	1.50	—
3.93	48.6	191.0	11.8	1.50^{c}	_
4.08	49.0	200.0	11.8	1.60 ^c	
4.14	47.8	198.0	11.8	1.34	—
4.33	48.0	209.0	11.8		1.37 ^d
4.40	11.0	48.4	4.2	1.72	_
5.49	46.8	257.0	11.8	1.27	1.22
6.60	10.6	70.0	11.8	2.14	
7.66	46.6	357.0	11.8	1.26	
7.92	9.7	77.0	4.2	1.66	<u></u>
10.55	10.5	110.7^{a}	4.2	1.53	
11.72	10.80	126.6^{b}	4.2	0.98	
11.78	47.60	561	11.8	1.07	
13.54	47.50	643	11.8	1.15	
18.70	10.70	200	4.2		1.30 ^d
21.76	10.80	235	4.2	1.94	_
22.30	10.50	234	4.2	1.60	1.40
23.30	10.60	247	4.2	1.74	
57.55	10.60	610	4.2	1,44	0.85
$a[N_2] =$	415 Torr.	^b [N ₂] =	476 Torr.	^c I.r. analysis.	^d U.v. analysis.

Photolysis of CCl₄-O₂ mixtures at 213.9 nm and 25 °C

TABLE 2

Photolysis of CCl₄–O₃ mixtures at 213.9 nm and 25 $^{\circ}$ C

[CCl ₄] (Torr)	[O ₃] (mTorr)	I _a (mTorr/min)	$\Phi{\{Cl_2\}^a}$	$\Phi{COCl_2}$	Φ{O ₃ }
8.3	2700	4.2		2.4	
10.8	2700	4.2	1.44		
10.8	357 ^b	4.2	_	1.31	3.45
11.0	388	4.2		2.2	4.90
45.6	388	11.8	-	1.35	3.39
45.6	357	11.8		1.46	
46.8	2700	11.8	1.28	—	
47.5	412	11.8		1.42	1.9

^a U.v. analysis. ^b [N₂] = 700 Torr.

TABLE 1

Fig. 1. Plot of $\Phi{\text{COCl}_2}$ vs. $[N_2]$ or $[O_2]$ for CCl₄ photolysis at 213.9 nm in the presence of O_2 or O_3 at 25 °C. \bigcirc , $[\text{CCl}_4] \sim 10$ Torr in the presence of O_2 ; \triangle , $[\text{CCl}_4] \sim 10$ Torr in the presence of O_2 ; \triangle , $[\text{CCl}_4] \sim 50$ Torr in the presence of O_2 ; \blacktriangle , $[\text{CCl}_4] \sim 50$ Torr in the presence of O_2 ; \bigstar , $[\text{CCl}_4] \sim 50$ Torr in the presence of O_3 . All analyses by gas chromatography.

 $-\Phi_0{O_3} = 5.5 \pm 0.5$ [8]. However, in this system we found that $-\Phi_0{O_3}$ was consistently 8.0 ± 0.1, indicating some impurity or wall effect. For this reason the ratio is reported, and its average value is 1.11 ± 0.10.

The average quantum yields of $COCl_2$ and Cl_2 formation are 0.87 ± 0.2 and 1.1 ± 0.2 respectively. Results in the presence of O_2 are shown in Table 4. Addition of O_2 to the CCl_4-O_3 system does not, as far as could be determined, lead to additional products but the formation of $COCl_2$ and Cl_2 and O_3 removal are suppressed. A systematic study of the effect of O_2 was performed only on the phosgene yield. The data in Table 4 show that $\Phi\{COCl_2\}$ declines as the $[O_2]/[CCl_4]$ ratio increases.

Discussion

Photolysis of CCl_4

At low pressures the photolysis data for CCl_4 in the presence of O_2 are consistent with the scheme:

$\operatorname{CCl}_4 + h\nu$ (2)	$(13.9 \text{ nm}) \rightarrow \text{CCl}_2 + \text{Cl}_2$	(1)
$CCl_2 + CCl_4$	$\rightarrow 2CCl_3$	(2)
$CCl_3 + O_2$	\rightarrow CCl ₃ O ₂	(3)
$2CCl_3O_2$	$\rightarrow 2CCl_3O + O_2$	(4)

ТА	BLI	E 3
----	-----	-----

[CCl ₄]	[O ₃]	I_a	$\Phi{COCl_2}$	$\Phi{Cl_2}$	$\Phi{O_3}$
(1011)	(111011)	(111011/11111)			$\Phi_0{O_3}$
9.45	150	2.04	0.67		_
10.00	150	2.04	0.87		_
10.4	183	2.70	0.84		1.10
10.8	377	5.78	0.65		0.94
16	2300	11.5		0.93	
16	2650	11.5		1.1	
20	880	9.5		1 .2	-
20	1400	11.5		1.2	
2 1	2300	11.5	-	1.0	
21	2400	11.5	_	0.97	
21.0	150	2.04	1.2	<u> </u>	
21.0	150	2.04	1.2		_
22	2800	11.5	-	1.2	
23	2400	11.5		0.93	—
23	2700	11.5	—	1.1	
24	1100	11.5		1.2	
26.3	411	5.30	0.74	_	1.24
28.5	424	5.30	0.84		1.17
41.0	173	2.70	0.84	—	1.02
44.3	41 1	5.30	0.88	—	1.22

Reaction of $O(^{1}D)$ with CCl_{4} at 25 $^{\circ}C$

TABLE 4

Reaction of $O(^{1}D)$ with CCl_{4} and O_{2} at 25 $^{\circ}C^{a}$

[O ₂]	[CCl ₄]	[O ₂]	$\Phi\{\operatorname{COCl}_2\}$	 Φ{O ₃ }	
[CCl ₄]	(Torr)	(Torr)		$\overline{\Phi_0 \{O_3\}}$	
0.78	46.8	36.7	0.83	0.69	
0.86	46.8	40.4	0.61	1.02	
1.75	46.9	81.9	0.83	0.82	
4.10	46.0	189	0.46	0.40	
6.06	46.4	281	0.40	0.58	
7.30	20.5	149	0.37	0.51	
9.74	21.9	214	0.26	0.42	
10.0	21.0	210	0.26	0.42	
11.5	46.8	538	0.26	0.38	
12. 1	22.3	270	0.26	0.39	
17.0	20.1	343	0.19	0.28	
13.5	20.8	260	0.154	0.35	

^a [O₃] = 150 mTorr, $I_a = 2.04$ mTorr/min.

$$CCl_3O \rightarrow CCl_2O + Cl$$
 (5)

$$Cl \rightarrow (\frac{1}{2})Cl_2$$
 (6)

In the presence of O_3 reactions (3), (4) and (6) must be replaced by:

$CCl_3 + O_3$	$\rightarrow \text{CCl}_3\text{O} + \text{O}_2$	(7)
$Cl + O_3$	\rightarrow ClO + O ₂	(8)
2ClO	\rightarrow 2Cl + O ₂	(9a)
2ClO	$\rightarrow \text{Cl}_2 + \text{O}_2$	(9b)

Primary process (1) followed by reaction (2) is suggested because the photolysis at low pressures leads to 2 molecules of phosgene per photon absorbed and therefore 2 molecules of CCl_4 must be removed per photon. The only fragment which could decompose a second molecule of CCl_4 appears to be CCl_2 . Cl, CCl_3 or any of the oxygenated radicals are unlikely to react with CCl_4 .

The CCl_2 produced would be expected to be in a singlet state, from spin conservation rules. This is supported by the fact that the CCl_2 fragment does not react with O_2 . Triplet CCl_2 reacts readily with O_2 to produce CO [9], but no CO was not found in this system.

The fate of CCl₃ in the presence of O₂ is given by reactions (3) - (5) as first suggested by Huybrechts *et al.* [10] and confirmed by Mathias *et al.* [11]. The quantum yield of phosgene in the presence of O₃ is the same as in the presence of O₂; consequently the reactions of CCl₃ with O₂ and O₃ must ultimately lead to a common precursor of COCl₂. Therefore reaction (7) must be the principle reaction between CCl₃ and O₃. In the presence of O₃ the Cl atoms will be removed by reaction (8) ($k_8 = 2 \times 10^{-11} \text{ cm}^3/\text{s}$) [12]. The ClO radicals produced in reaction (8) will be removed by reactions (9a) or (9b), depending upon the total pressure. The bimolecular reaction of ClO radicals at low pressures (≤ 8 Torr argon) is known to proceed exclusively by reaction 9a [13]. At higher pressures (≥ 70 Torr argon) reaction (9a) could occur at the lowest pressures used (~ 10 Torr CCl₄), though for experiments for which CCl₄ ~ 50 Torr reaction (9a) is negligible. The reaction:

$$\text{ClO} + \text{O}_3 \rightarrow \text{Cl} + 2\text{O}_2 \text{ or } \text{ClO}_2 + \text{O}_2$$
 (10)

can be neglected because it is very slow $(k_{10} = (2 - 7) \times 10^{-19} \text{ cm}^3/\text{s})$ [16].

At higher total pressures $\Phi{COCl_2}$ declines and reaches a value of about 1.0 at 600 - 700 Torr N₂ or O₂ and ~ 50 Torr CCl₄. The data are shown graphically in Fig. 1. A readily apparent explanation of this pressure effect, which is consistent with all the data, is the participation of a relatively long-lived excited state of CCl₄. Thus the following paths are possible:

 $\operatorname{CCl}_4 + h\nu \to \operatorname{CCl}_4^*$

or

 $\begin{array}{ll} \operatorname{CCl}_{4}^{\star} + \mathrm{M} & \rightarrow \operatorname{CCl}_{4}^{\star \star} + \mathrm{M} \\ \operatorname{CCl}_{4}^{\star} & \rightarrow \operatorname{CCl}_{2} + \operatorname{Cl}_{2} \\ \operatorname{CCl}_{4}^{\star \star} & \rightarrow \operatorname{CCl}_{3} + \operatorname{Cl} \end{array}$

where * and ** are excited states of CCl₄ and these could be different electronic states, or the same electronic state with different vibrational energies.

The difficulty of postulating a long lived excited state for CCl_4 is that spectral studies of other halomethanes suggest that the broad band observed from about 160 - 250 nm can be attributed to a $n-\sigma^*$ transition which is not likely to lead to a stable excited state [17, 18]. However, the fact that the primary process appears to be molecular Cl_2 elimination implies that the transition does not lead to a simple repulsive potential curve along the C-Cl bond reaction coordinate, but must involve considerable electronic rearrangement.

The most reasonable explanation of the pressure effect would be:

 $\begin{aligned} \operatorname{CCl}_2 &+ \operatorname{CCl}_4 \to \operatorname{C}_2 \operatorname{Cl}_6^{\star} \\ \operatorname{C}_2 \operatorname{Cl}_6^{\star} &\to \operatorname{2CCl}_3 \\ \operatorname{C}_2 \operatorname{Cl}_6^{\star} &+ \operatorname{M} &\to \operatorname{C}_2 \operatorname{Cl}_6 &+ \operatorname{M} \end{aligned}$

but a careful search for C_2Cl_6 production was negative. The failure to stabilize C_2Cl_6 (providing it is formed) even at 1 atm O_2 or N_2 is not impossible since the A factor for C_2Cl_6 decomposition is very large $(10^{17.7} \text{ s}^{-1})$ [19]. Furthermore primary process (1) is exothermic by ~ 50 kcal/mol at 213.9 nm, and the CCl₂ may be produced with excess energy.

In the mechanism, we have neglected the reaction of CCl_2 with O_2 at high O_2 pressures, because addition of O_2 has the same effect as the addition of N_2 . Consequently the reaction of CCl_2 with O_2 cannot compete with reaction (2); the rate coefficient is $\leq 10^{-13}$ cm³/s, and CCl_2 cannot be in its triplet state.

The first of the excited-state mechanisms predicts that $\Phi{\text{COCl}_2} = \Phi{\text{Cl}_2}$ goes from $2 \rightarrow 0$ as [M] goes from $0 \rightarrow \infty$; whereas the second mechanism predicts that $\Phi{\text{COCl}_2} = \Phi{\text{Cl}_2}$ goes from $2 \rightarrow 1$ as [M] goes from $0 \rightarrow \infty$. The highest total pressures used were not sufficiently high to determine if the quantum yields of COCl_2 drop below 1. Thus if either of the two mechanisms is operative the present data cannot distinguish between them. However, since at longer wavelengths the primary process:

$$\operatorname{CCl}_4 + h\nu \ (\sim 250 \text{ nm}) \to \operatorname{CCl}_3 + \operatorname{Cl} \tag{1'}$$

becomes dominant [3, 4], the second mechanism is more attractive, because it provides for the formation of $CCl_3 + Cl$ within the same electronic

transition; * and ** now would refer to different vibrational levels of the same electronic state.

The Cl_2 quantum yield is substantially below 2 (1.2 - 1.4) at low pressures and is insensitive to total pressure, contrary to expectation. The reason for this is not known, but stable oxides of chlorine may have been formed which were not detected. The previously mentioned product observed in the u.v. spectrum of the reaction mixture does not correspond to that of any of the known chlorine oxides. Both mechanisms predict that in the presence of O_3 at low pressures $-\Phi\{O_3\}$ should be 4 and decline to either 3 or zero as $M \rightarrow \infty$. The data for O_3 are very limited, but they do show a slight downward trend with increasing pressure (Table 2).

The present results can be compared to the only other study of CCl_4 photolysis at shorter wavelengths by Davis *et al.* [4]. This group studied the photolysis at 253.7, 184.9, 147.0 and 106.7 nm. In that study, using Br₂ scavenging experiments, it was concluded that at 253.7 nm the dominant primary process is:

$$\operatorname{CCl}_4 + h\nu \ (253.7 \text{ nm}) \to \operatorname{CCl}_3 + \operatorname{Cl} \ . \tag{1'}$$

in agreement with other studies [3]. However, at 184.9 nm process (1) becomes important with $\phi\{1\} = 0.6$ and $\phi\{1'\} = 0.4$. From the large amounts of Br₂ necessary to scavenge the CCl₂ radicals it was concluded that reaction (2) is very efficient, though no direct evidence for reaction (2) was presented. C₂Cl₆ formation *via* reaction (2) was suggested but its presence was not determined.

The present results show that $\phi\{1\} = 1$ and $\phi\{1'\} \sim 0$ at low pressures. These results are not necessarily in conflict with those of Davis *et al.* if an excited state mechanism is operative, according to which the relative importance of process (1) and (1') could vary with conditions.

The production of carbene in the photolysis of CCl_4 is not unique for halomethanes. The photolysis of CH_2I_2 , (20), CF_2Br_2 and CF_2HBr [21] have been shown to undergo molecular elimination reactions at around 200 nm.

Reaction of $O(^{1}D)$ with CCl_{4}

The photolysis of O_3 at 253.7 nm in the presence of excess CCl_4 can be discussed by considering the following mechanisms:

$O_3 + h\nu$ (253.)	7 nm) $\rightarrow O_2(^1\Delta) + O(^1D)$	Rate I_a	
$O_2(^1\Delta) + O_3$	$\rightarrow O_2 + O(^{3}P)$		(11)
$O(^{3}P) + O_{3}$	$\rightarrow 2O_2$		(12)
$O(^{1}D) + CCl_{4}$	\rightarrow ClO + CCl ₃		(13a)
$O(^{1}D) + CCl_{4}$	\rightarrow CCl ₂ O + Cl ₂		(13b)
$O(^{1}D) + CCl_{4}$	$\rightarrow O(^{3}P) + CCl_{4}$		(13c)
$CCl_3 + O_3$	\rightarrow CCl ₃ O + O ₂		(7)

CCl ₃ O	\rightarrow CCl ₂ O + Cl	(5)
$Cl + O_3$	\rightarrow ClO + O ₂	(8)
2ClO	\rightarrow 2Cl + O ₂	(9a)
2ClO	$\rightarrow \text{Cl}_2 + \text{O}_2$	(9b)

In the presence of O_2 the additional reactions are:

$$O(^{1}D) + O_{2} \rightarrow O(^{3}P) + O_{2}$$
 (14)

$$CCl_3 + O_2 \rightarrow CCl_3O_2 \tag{3}$$

$$2CCl_3O_2 \rightarrow 2CCl_3O + O_2 \tag{4}$$

The primary process giving $O_2(^{1}\Delta)$ and $O(^{1}D)$ as well as reactions (11) and (12) are so well known that they need not be discussed here [8]. The reactions of $O(^{1}D)$ with CCl_4 may proceed by way of 3 channels. The resulting ClO and CCl_3 will react as in the photolysis experiments already discussed. The reaction of $O(^{1}D)$ with O_3 :

$$O(^{1}D) + O_{3} \rightarrow 2O_{2} \tag{15}$$

is neglected and this is justified below.

The mechanism predicts that in the absence of O_2 :

$$\Phi\{\text{COCl}_2\} = \Phi\{\text{Cl}_2\} = \phi\{13a\} + \phi\{13b\}$$
(I)

Since $\Phi\{COCl_2\} = 0.87 \pm 0.2$ and $\Phi\{Cl_2\} = 1.1 \pm 0.2$, $\phi\{13a\} + \phi\{13b\} = 1.0 \pm 0.2$; thus $\phi\{13c\} \le 0.20$. The mechanism also preducts that $-\Phi\{O_3\} = 3$ if reaction (13b) is the exclusive primary process. If reaction (13a) is the exclusive primary process, $-\Phi\{O_3\} = 5$ when reaction (9a) is negligible, and $-\Phi\{O_3\} > 5$ when reaction (9a) is important. The measured value of $\Phi\{O_3\}/\Phi_0\{O_3\} = 1.11 \pm 0.01$ indicates that $-\Phi\{O_3\} \ge 6$. Consequently process (13a) is dominant. This agrees with the direct observation of ClO production in the $O(^1D)-CCl_4$ system [5].

In the presence of O_2 the rate law for $COCl_2$ formation is:

$$\Phi\{\text{COCl}_2\}^{-1} = 1 + k_{14}[O_2]/k_{13}[\text{CCl}_4]$$
(II)

A plot of $\Phi{\text{COCl}_2}^{-1}$ vs. $[O_2]/[\text{CCl}_4]$ is shown in Fig. 2. The plot obeys equation (II) reasonably well. From the slope $k_{14}/k_{13} = 0.25 \pm 0.03$, and, since $k_{14} = 7.4 \times 10^{-11} \text{ cm}^3/\text{s}$ [22], $k_{13} = 3.0 \times 10^{-10} \text{ cm}^3/\text{s}$. Also since $k_{15} = (5.3 \pm 0.3) \times 10^{-10} \text{ cm}^3/\text{s}$ [22], and the O₃ pressures were very much lower than the pressures for the other reactants, the neglect of reaction (15) in the mechanism is justified.

Acknowledgement

This work was supported by the Environmental Protection Agency through Grant No. 800949, the National Aeronautics and Space Administration through Grant No. NGL-009-003 and the Atmospheric Sciences Section of the National Science Foundation through Grant No. GA-42856 for which we are grateful.

Fig. 2. Plot of $\Phi{\text{COCl}_2}^{-1}$ vs. $[O_2]/[\text{CCl}_4]$ for O_3 photolysis at 253.7 nm in the presence of CCl₄ at 25 °C.

References

- 1 E. H. Lyons, Jr. and R. G. Dickinson, J. Am. Chem. Soc., 57 (1935) 443.
- 2 V. K. Pfondte, J. Prakt. Chem., 5 (1957) 196.
- 3 J. Currie, J. Sidebottom and J. Tedder, Int. J. Chem. Kinet., 6 (1974) 481; earlier references are given in this paper.
- 4 D. D. Davis, J. F. Schmidt, C. M. Neeley and R. J. Hanrahan, J. Phys. Chem., 79 (1975) 11.
- 5 G. M. Meaburn, D. Perner, J. LeCalve and M. Bourene, J. Phys. Chem., 72 (1968) 3020.
- 6 G. S. Forbes, I. E. Cline and B. C. Bradshaw, J. Am. Chem. Soc., 60 (1938) 1413.
- 7 R. Simonaitis and J. Heicklen, J. Phys. Chem., 78 (1974) 653.
- 8 E. Lissi and J. Heicklen, J. Photochem., 1 (1972) 39.
- 9 E. Sanhueza and J. Heicklen, Can. J. Chem., 52 (1974) 3870.
- 10 G. Huybrechts, J. Olbregts and K. Thomas. Trans. Faraday Soc., 63 (1967) 1647.
- 11 E. Mathias, E. Sanhueza, I. C. Hisatsune and J. Heicklen, Can. J. Chem., 52 (1974) 3852.
- 12 R. T. Watson, Chemical Kinetics Data Survey VIII, National Bureau of Standards, Internal Report 74-516, (1974).
- 13 M. A. A. Clyne and I. F. White, Trans. Faraday Soc., 67 (1971) 2068.
- 14 G. Porter and F. J. Wright, Discuss. Faraday Soc., 14 (1953) 23.
- 15 N. Basco and N. K. Dogra, Proc. Roy. Soc., A323 (1971) 29 and 401.
- 16 Evaluated from the paper by R. G. W. Norrish and G. H. J. Neville, J. Chem. Soc., (1934) 1804.
- 17 J. Doucet, P. Sanvegeau and C. Sandorfy, J. Chem. Phys., 58 (1973) 3708.
- 18 J. R. Majer and J. P. Simons, Adv. Photochem., 2 (1964) 137.
- 19 M. L. White and R. R. Kuntz, Int. J. Chem. Kinet., 5 (1973) 187.
- 20 G. W. G. Style and J. C. Ward, J. Chem. Soc., (1952) 2125.
- 21 J. R. Majer and C. R. Patrick, Nature, 192 (1961) 866.
- 22 D. Garvin and R. F. Hampson, Chemical Kinetics Data Survey VII, Tables of Rate and Photochemical Data for Modelling of the Stratosphere, (Revised), National Bureau of Standards Internal Report, 74-430 (1974).